4.6 Article

Quantum fluctuations in the superfluid state of the BCS-BEC crossover

期刊

PHYSICAL REVIEW A
卷 77, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.77.023626

关键词

-

向作者/读者索取更多资源

We determine the effects of quantum fluctuations about the T= 0 mean-field solution of the BCS-BEC crossover in a dilute Fermi gas using the functional integral method. These fluctuations are described in terms of the zero-point motion of collective modes and the virtual scattering of gapped quasiparticles. We calculate their effects on various measurable properties, including chemical potential, ground-state energy, the gap, the speed of sound and the Landau critical velocity. At unitarity, we find excellent agreement with quantum Monte Carlo and experimental results. In the BCS limit, we show analytically that we obtain Fermi liquid interaction corrections to thermodynamics including the Hartree shift. In the Bose-Einstein condensation (BEC) limit, we show that the theory leads to an approximate description of the reduction of the scattering length for bosonic molecules and also obtain quantum depletion of the Lee-Yang form. At the end of the paper, we describe a method to include feedback of quantum fluctuations into the gap equation, and discuss the problems of self-consistent calculations in satisfying Goldstone's theorem and obtaining ultraviolet finite results at unitarity. We determine the effects of quantum fluctuations about the T=0 mean-field solution of the BCS-BEC crossover in a dilute Fermi gas using the functional integral method. These fluctuations are described in terms of the zero-point motion of collective modes and the virtual scattering of gapped quasiparticles. We calculate their effects on various measurable properties, including chemical potential, ground-state energy, the gap, the speed of sound and the Landau critical velocity. At unitarity, we find excellent agreement with quantum Monte Carlo and experimental results. In the BCS limit, we show analytically that we obtain Fermi liquid interaction corrections to thermodynamics including the Hartree shift. In the Bose-Einstein condensation (BEC) limit, we show that the theory leads to an approximate description of the reduction of the scattering length for bosonic molecules and also obtain quantum depletion of the Lee-Yang form. At the end of the paper, we describe a method to include feedback of quantum fluctuations into the gap equation, and discuss the problems of self-consistent calculations in satisfying Goldstone's theorem and obtaining ultraviolet finite results at unitarity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据