4.6 Article

Comparison of quantum and classical local-field effects on two-level atoms in a dielectric

期刊

PHYSICAL REVIEW A
卷 78, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.78.053827

关键词

-

向作者/读者索取更多资源

The macroscopic quantum theory of the electromagnetic field in a dielectric medium interacting with a dense collection of embedded two-level atoms fails to reproduce a result that is obtained from an application of the classical Lorentz local-field condition. Specifically, macroscopic quantum electrodynamics predicts that the Lorentz redshift of the resonance frequency of the atoms will be enhanced by a factor of the refractive index n of the host medium. However, an enhancement factor of (n(2)+2)/3 is derived using the Bloembergen procedure in which the classical Lorentz local-field condition is applied to the optical Bloch equations. Both derivations are short and uncomplicated and are based on well-established physical theories, yet lead to contradictory results. Microscopic quantum electrodynamics confirms the classical local-field-based results. Then the application of macroscopic quantum electrodynamic theory to embedded atoms is proved false by a specific example in which both the correspondence principle and microscopic theory of quantum electrodynamics are violated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据