4.6 Article

Quantum many-body dynamics of coupled double-well superlattices

期刊

PHYSICAL REVIEW A
卷 78, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.78.012330

关键词

-

向作者/读者索取更多资源

We propose a method for controllable generation of nonlocal entangled pairs using spinor atoms loaded in an optical superlattice. Our scheme iteratively increases the distance between entangled atoms by controlling the coupling between the double wells. When implemented in a finite linear chain of 2N atoms, it creates a triplet valence bond state with large persistency of entanglement (of the order of N). We also study the nonequilibrium dynamics of the one-dimensional ferromagnetic Heisenberg Hamiltonian and show that the time evolution of a state of decoupled triplets on each double well leads to the formation of a highly entangled state where short-distance antiferromagnetic correlations coexist with longer-distance ferromagnetic ones. We present methods for detection and characterization of the various dynamically generated states. These ideas are a step forward toward the use of atoms trapped by light as quantum-information processors and quantum simulators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据