4.6 Article

Decoherence of Bell states by local interactions with a dynamic spin environment

期刊

PHYSICAL REVIEW A
卷 78, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.78.012357

关键词

-

向作者/读者索取更多资源

We study the evolution of a system of two qubits, each of which interacts locally with a spin chain with nontrivial internal Hamiltonian. We present an exact solution to this problem and analyze the dependence of decoherence on the distance between the interaction sites. In the strong coupling regime we find that decoherence increases with increasing distance. In the weak coupling regime the dependence of decoherence with distance is not generic (i.e., it varies according to the initial state). Decoherence becomes independent of distance when the latter is over a saturation length l. Numerical results for the Ising chain suggest that the saturation scale is related to the correlation length xi. For strong coupling we display evidence of the existence of non-Markovian effects (such as environment-induced interactions between the qubits). As a consequence the system can undergo a quasiperiodic sequence of sudden deaths and revivals of entanglement, with a time scale related to the distance between qubits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据