4.6 Article

Computational power of symmetric Hamiltonians

期刊

PHYSICAL REVIEW A
卷 78, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.78.012346

关键词

-

向作者/读者索取更多资源

The presence of symmetries, be they discrete or continuous, in a physical system typically leads to a reduction in the problem to be solved. Here we report that neither translational invariance nor rotational invariance reduce the computational complexity of simulating Hamiltonian dynamics; the problem is still bounded error, quantum polynomial time complete, and is believed to be hard on a classical computer. This is achieved by designing a system to implement a universal quantum interface, a device which enables control of an arbitrary computation through the control of a fixed number of spins, and using it as a building block to entirely remove the need for control, except in the system initialization. Finally, it is shown that cooling such Hamiltonians to their ground states in the presence of random magnetic fields solves a Quantum-Merlin-Arthur-complete problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据