4.6 Article

One-way quantum computation with two-photon multiqubit cluster states

期刊

PHYSICAL REVIEW A
卷 78, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.78.042335

关键词

-

向作者/读者索取更多资源

We describe the application of four-qubit cluster states, built on the simultaneous entanglement of two photons in the degrees of freedom of polarization and linear momentum, for the realization of a complete set of basic operations of one-way quantum computation. These consist of arbitrary single-qubit rotations, either probabilistic or deterministic, and simple two-qubit gates, such as a controlled-NOT (CNOT) gate for equatorial qubits and a universal controlled-phase gate (controlled-Z or CZ) gate acting on arbitrary target qubits. Other basic computation operations, such as the Grover's search and the Deutsch's algorithms, have been realized by using these states. In all the cases we obtained a high value of the operation fidelities. These results demonstrate that cluster states of two photons entangled in many degrees of freedom are good candidates for the realization of more complex quantum computation operations based on a larger number of qubits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据