4.6 Article

Application of electrochemical surface plasmon resonance (ESPR) to the study of electroactive microbial biofilms

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 20, 期 40, 页码 25648-25656

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp03898h

关键词

-

资金

  1. NRL base funds
  2. Applied Research for the Advancement of S&T Priorities (ARAP) Program Proposal: Joint Services Laboratories' Capabilities in Synthetic Biology for Military Environments
  3. Office of Naval Research NREIP program

向作者/读者索取更多资源

Electrochemical surface plasmon resonance (ESPR) monitors faradaic processes optically by the change in refractive index that occurs with a change in redox state at the electrode surface. Here we apply ESPR to investigate the anode-grown Geobacter sulfurreducens biofilm (GSB), a model system used to study electroactive microbial biofilms (EABFs) which perform electrochemical reactions using electrodes as metabolic electron acceptors or donors. A substantial body of evidence indicates that electron transfer reactions among hemes of c-type cytochromes (c-Cyt) play major roles in the extracellular electron transfer (EET) pathways that connect intracellular metabolic processes of cells in an EABF to the electrode surface. The results reported here reveal that when the potential of the electrode is changed from relatively oxidizing (0.40 V vs. SHE) to reducing (-0.55 V vs. SHE) and then back to oxidizing, 70% of c-Cyt residing closest to the biofilm/electrode (within hundreds of nm from the electrode surface) appear to remain trapped in the reduced state, requiring as long as 12 hours to be re-oxidized. c-Cyt storing electrons cannot contribute to EET, yet turnover current resulting from cellular oxidation of acetate coupled with EET to the electrode surface is unaffected. This suggests that a relatively small fraction of c-Cyt residing closest to the biofilm/electrode interface is involved in EET while the majority store electrons. The results also reveal that biomass density at the biofilm/electrode interface increases rapidly during lag phase, reaching its maximum value at the onset of exponential biofilm growth when turnover current begins to rapidly increase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据