4.6 Article

Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide - a unique 2D macromolecular surfactant

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 12, 页码 5589-5599

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp55038a

关键词

-

资金

  1. National Natural Science Foundation of China [21173045, 20903023]
  2. Award Program for Minjiang Scholar Professorship
  3. Natural Science Foundation (NSF) of Fujian Province for Distinguished Young Investigator Grant [2012J06003]
  4. Program for Changjiang Scholars and Innovative Research Team in Universities [PCSIRT0818]
  5. Program for Returned High-level Overseas Chinese Scholars of Fujian province
  6. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are strongly dependent on its morphology and defect structure, particularly for a semiconductor ZnO-based photocatalyst. Here, we demonstrate a simple strategy for simultaneous morphology control, defect engineering and photoactivity tuning of semiconductor ZnO by utilizing the unique surfactant properties of graphene oxide (GO) in a liquid phase. By varying the amount of GO added during the synthesis process, the morphology of ZnO gradually evolves from a one dimensional prismatic rod to a hexagonal tube-like architecture while GO is converted into reduced GO (RGO). In addition, the introduction of GO can create oxygen vacancies in the lattice of ZnO crystals. As a result, the absorption edge of the wide band gap semiconductor ZnO is effectively extended to the visible light region, which thus endows the RGO-ZnO nanocomposites with visible light photoactivity; in contrast, the bare ZnO nanorod is only UV light photoactive. The synergistic integration of the unique morphology and the presence of oxygen vacancies imparts the RGO-ZnO nanocomposite with remarkably enhanced visible light photoactivity as compared to bare ZnO and its counterpart featuring different structural morphologies and the absence of oxygen vacancies. Our promising results highlight the versatility of the 2D GO as a solution-processable macromolecular surfactant to fabricate RGO-semiconductor nanocomposites with tunable morphology, defect structure and photocatalytic performance in a system-materials-engineering way.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据