4.6 Article

The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 23, 页码 11374-11380

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp01144a

关键词

-

资金

  1. MIT Energy Initiative
  2. Chesonis Family Foundation
  3. National Science Foundation [DMR-08-19762]

向作者/读者索取更多资源

Hematite or alpha-Fe2O3 has emerged as a highly promising photoanode candidate for photoelectrochemical cells. While significant improvements in its performance have recently been achieved, it remains unclear why the maximum photocurrents still remain well below their theoretical predictions. Here, we report, for the first time, a detailed correlation between the electrical conductivity of undoped and 1 atom% Ti doped hematite and the conditions under which it was annealed (20 <= T <= 800 degrees C and 10(-4) <= pO(2) <= 1 atm). Hematite thin films grown by pulsed laser deposition onto sapphire single crystals were evaluated by impedance spectroscopy. Hematite's room temperature conductivity can be increased from similar to 10(11) S cm(-1) for undoped films by as much as nine orders of magnitude by doping with the Ti donor. Furthermore, by controlling the non-stoichiometry of Ti-doped hematite, one can tune its conductivity by up to five orders of magnitude. Depending on processing conditions, donor dopants in hematite may be compensated largely by electrons or by ionic defects (Fe vacancies). A defect model was derived to explain this phenomenon. In addition, a temperature independent value for the electron mobility of 0.01 cm(2) V-1 s(-1) for a donor density of 4.0 x 10(20) cm(-3) (1% Ti) was derived. These results highlight the importance of carefully controlling photoanode processing conditions, even when operating within the material's extrinsic dopant regime, and more generally, provide a model for the electronic properties of semiconducting metal oxide photoanodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据