4.6 Article

A density functional theory study of catalytic sites for oxygen reduction in Fe/N/C catalysts used in H-2/O-2 fuel cells

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 27, 页码 13654-13661

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp55331k

关键词

-

资金

  1. NSERC program Engage
  2. MESRST program of the Gouvernement du Quebec''

向作者/读者索取更多资源

The oxygen reduction catalytic activity of carbon-supported FeN4 moieties bridging micropores between two graphene sheets was investigated by density functional theory (DFT). Based on the FeN2+2/C structure proposed earlier by our group, two types of FeN2+2/C structures were considered: one mostly planar and one in which the Fe ion is significantly displaced out of the graphitic plane. A structure in which the FeN4 moiety is embedded in an extended graphene sheet (FeN4pyri/C) was also considered. In addition, we have investigated the influence of an axial pyridine group approaching the Fe centre. The formation energy is lowest for the planar FeN2+2/C structure. The overall downhill behaviour of the relative free energy vs. the reaction step suggests that most structures have catalytic activity near zero potential. This conclusion is further supported by calculations of the binding energies of adsorbed O-2 and H2O and of the O-O bond lengths of adsorbed O-2 and OOH. The side- on interaction of adsorbed O-2 is preferred over the end-on interaction for the three basic structures without the axial pyridine. The pyridine coordination produces a stronger binding of O-2 for the planar FeN2+2/C and the FeN4pyri/C structures as well as a dominant end-on interaction of O-2. The energy levels of the planar FeN2+2/C structure with and without the pyridine ligand are nearly equal for iron spin states S = 1 and S = 2, suggesting that both configurations are formed with similar concentration during the preparation process, as also previously found for two of the iron sites by Mossbauer spectroscopy experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据