4.6 Article

Investigation of nanolevel molecular packing and its role in thermo-mechanical properties of PVA-fMWCNT composites: positron annihilation and small angle X-ray scattering studies

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 4, 页码 1399-1408

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp54054e

关键词

-

向作者/读者索取更多资源

Carbon based nanofillers have shown phenomenal improvements in thermo-mechanical properties of poly vinyl alcohol (PVA) based nanocomposites depending on their interaction with PVA molecules and dispersion in the polymer matrix. In the present study, PVA based nanocomposites with amino-functionalized multi-wall carbon nanotubes (fMWCNTs, 0.2, 0.4, 0.8 and 1.0 wt%) were prepared by a simple casting method from aqueous solution. The relative increase in Young's modulus with 0.4% fMWCNTs was observed to be comparable with that for PVA-nanodiamond composite films which have been shown to have higher strength compared to nanotube and graphene oxide based nanocomposites. In order to investigate the nanolevel molecular packing (sub-nano level free volumes and nano level lamellar structure) and its role in thermal and mechanical properties, positron annihilation spectroscopy and small angle scattering have been used. The crystallinity and morphology of the samples were characterized using X-ray diffraction and scanning electron microscopy. The studies showed that interfacial interaction between PVA molecules and functionalities on the surface of fMWCNTs results in the formation of an ordered structure of PVA molecules which enhances load transfer between the PVA matrix and fMWCNTs leading to improved mechanical properties. The thermal properties of the composites were observed to be unaffected at the studied filler concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据