4.6 Article

Faradaic efficiency of O-2 evolution on metal nanoparticle sensitized hematite photoanodes

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 3, 页码 1271-1275

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp54288b

关键词

-

资金

  1. Formas [219-2011-959, 229-2009-772]

向作者/读者索取更多资源

Functionalization of transition metal oxides using metallic nanoparticles is an interesting route towards efficient photoelectrochemical hydrogen production via water splitting. Although an enhanced photocurrent in photoanodes upon functionalization with metallic nanostructures has been observed in several studies, to the best of our knowledge no measurements of the Faradaic efficiency (FE) of the oxygen evolution reaction (OER) have been reported for such systems. This work characterizes the FE on a model system consisting of ultra-thin films of hematite (Fe2O3) sensitized with Ti/Au nanodisks. Compared to bare hematite references, sensitized samples showed significantly enhanced photocurrents as well as O-2 evolution. Experimental evidence suggests that the observed enhancement was not due to photocatalytic activity of the nanodisks. The FE has been determined to be 100%, within the experimental errors, for both sensitized and reference samples. Also, this work demonstrates that the sensitized samples were stable for at least 16 hours photocurrent testing. The concepts shown in this work are generally applicable to any situation in which a semiconductor has its water splitting performance enhanced by metallic nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据