4.6 Article

The binding mechanisms of intrinsically disordered proteins

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 14, 页码 6323-6331

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp54226b

关键词

-

资金

  1. Swedish Research Council
  2. Human Frontiers Science Programme
  3. Magnus Bergvall Foundation
  4. Italian Ministry of University and Research (PNR-CNR Aging Program)

向作者/读者索取更多资源

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins are very common and instrumental for cellular signaling. Recently, a number of studies have investigated the kinetic binding mechanisms of IDPs and IDRs. These results allow us to draw conclusions about the energy landscape for the coupled binding and folding of disordered proteins. The association rate constants of IDPs cover a wide range (10(5)-10(9) M-1 s(-1)) and are largely governed by long-range charge-charge interactions, similarly to interactions between well-folded proteins. Off-rate constants also differ significantly among IDPs (with half-lives of up to several minutes) but are usually around 0.1-1000 s(-1), allowing for rapid dissociation of complexes. Likewise, affinities span from pM to mu M suggesting that the low-affinity high-specificity concept for IDPs is not straightforward. Overall, it appears that binding precedes global folding although secondary structure elements such as helices may form before the protein-protein interaction. Short IDPs bind in apparent two-state reactions whereas larger IDPs often display complex multi-step binding reactions. While the two extreme cases of two-step binding (conformational selection and induced fit) or their combination into a square mechanism is an attractive model in theory, it is too simplistic in practice. Experiment and simulation suggest a more complex energy landscape in which IDPs bind targets through a combination of conformational selection before binding (e. g., secondary structure formation) and induced fit after binding (global folding and formation of short-range intermolecular interactions).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据