4.6 Article

Morphology and surface properties of LiVOPO4: a first principles study

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 44, 页码 24604-24609

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp03628j

关键词

-

资金

  1. National Natural Science Foundation of China [51203016]
  2. Doctoral Fund of Ministry of Education of China [20130043120008]
  3. Fundamental Research Funds for the Central Universities [11QNJJ016]

向作者/读者索取更多资源

First principles calculations were used to investigate the surface energies, equilibrium morphology, surface redox potentials, and surface electrical conductivity of LiVOPO4. Relatively low-energy surfaces are found in the (100), (010), (001), (011), (111), and (201) orientations of the orthorhombic structure. Thermodynamic equilibrium shape of the LiVOPO4 crystal is built with the calculated surface energies through a Wulff construction. The (001) and (111) orientations are the dominating surfaces in the Wulff shape. Similar calculations for VOPO4 display a larger decrease in surface energies for the (100) surface rather than those in the other surfaces. It suggests that the Wulff shape of LiVOPO4 is closely related to the chemical environment around. Surfaces (100), (010) and (201) present lower Li surface redox potentials in comparison with the bulk material. Therefore, the Li migration rate on surfaces could be effectively increased by maximizing the exposure of these low redox potential surfaces. In addition, lower surface band gaps are found in all orientations compared to the bulk one, which indicates that electrical conductivity can be improved significantly by enlarging surfaces with relatively low band gaps in the particle. Therefore, synthesizing (201) and (100) nanosheets will greatly improve the electrochemical properties of the material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据