4.6 Article

Hydration of the oxygen-evolving complex of photosystem II probed in the dark-stable S1 state using proton NMR dispersion profiles

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 16, 期 24, 页码 11924-11935

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp55232b

关键词

-

资金

  1. Artificial Leaf Project Umea (K&A Wallenberg foundation)
  2. Solar Fuels strong research environment Umea (Umea University)
  3. Energimyndigheten
  4. MEXT/JSPS of Japan [24000018]
  5. Grants-in-Aid for Scientific Research [24000018] Funding Source: KAKEN

向作者/读者索取更多资源

The hydration of the oxygen-evolving complex (OEC) was characterized in the dark stable S-1 state of photosystem II using water R-1(omega) NMR dispersion (NMRD) profiles. The R-1(omega) NMRD profiles were recorded over a frequency range from 0.01 MHz to 40 MHz for both intact and Mn-depleted photosystem II core complexes from Thermosynechococcus vulcanus (T. vulcanus). The intact-minus-(Mn)-depleted difference NMRD profiles show a characteristic dispersion from approximately 0.03 MHz to 1 MHz, which is interpreted on the basis of the Solomon-Bloembergen-Morgan (SBM) and the slow motion theories as being due to a paramagnetic enhanced relaxation (PRE) of water protons. Both theories are qualitatively consistent with the S-T = 1, g = 4.9 paramagnetic state previously described for the S-1 state of the OEC; however, an alternative explanation involving the loss of a separate class of long-lived internal waters due to the Mn-depletion procedure can presently not be ruled out. Using a point-dipole approximation the PRE-NMRD effect can be described as being caused by 1-2 water molecules that are located about 10 angstrom away from the spin center of the Mn4CaO5 cluster in the OEC. The application of the SBM theory to the dispersion observed for PSII in the S-1 state is questionable, because the parameters extracted do not fulfil the presupposed perturbation criterion. In contrast, the slow motion theory gives a consistent picture indicating that the water molecules are in fast chemical exchange with the bulk (tau(w) < 1 mu s). The modulation of the zero-field splitting (ZFS) interaction suggests a (restricted) reorientation/ structural equilibrium of the Mn4CaO5 cluster with a characteristic time constant of tau(ZFS) = 0.6-0.9 mu s.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据