4.6 Article

Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 31, 页码 13083-13092

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp52237g

关键词

-

资金

  1. ENI [N.R/ENI/BGI/40/12]
  2. FIRB [N. RBAP11C58Y]

向作者/读者索取更多资源

Indium tin oxide (ITO) surfaces of triple junction photovoltaic cells were functionalized with oxygen evolving catalysts (OECs) based on amorphous hydrous earth-abundant metal oxides (metal = Fe, Ni, Co), obtained by straightforward Successive Ionic Layer Adsorption and Reaction (SILAR) in an aqueous environment. Functionalization with Fe(III) oxides gave the best results, leading to photoanodes capable of efficiently splitting water, with photocurrent densities up to 6 +/- 1 mA cm(-2) at 0 V vs. the reversible hydrogen electrode (RHE) under AM 1.5 G simulated sunlight illumination. The resulting Solar To Hydrogen (STH) conversion efficiencies, measured in two electrodes configuration, were in the range 3.7-5%, depending on the counter electrode that was employed. Investigations on the stability showed that these photoanodes were able to sustain 120 minutes of continuous illumination with a < 10% photocurrent loss at 0 V vs. RHE. Pristine photoanodic response of the cells could be fully restored by an additional SILAR cycle, evidencing that the observed loss is due to the detachment of the more weakly surface bound catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据