4.6 Article

A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system - battery not included

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 17, 页码 6278-6283

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp50929j

关键词

-

资金

  1. National Science Foundation [CBET-1066397]
  2. Semiconductor Research Corporation [2008-RJ-1839G]
  3. Div Of Chem, Bioeng, Env, & Transp Sys [1066397] Funding Source: National Science Foundation

向作者/读者索取更多资源

Biocatalytic electrodes made of buckypaper were modified with PQQ-dependent glucose dehydrogenase on the anode and with laccase on the cathode and were assembled in a flow biofuel cell filled with serum solution mimicking the human blood circulatory system. The biofuel cell generated an open circuitry voltage, V-oc, of ca. 470 mV and a short circuitry current, I-sc, of ca. 5 mA (a current density of 0.83 mA cm(-2)). The power generated by the implantable biofuel cell was used to activate a pacemaker connected to the cell via a charge pump and a DC-DC converter interface circuit to adjust the voltage produced by the biofuel cell to the value required by the pacemaker. The voltage-current dependencies were analyzed for the biofuel cell connected to an Ohmic load and to the electronic loads composed of the interface circuit, or the power converter, and the pacemaker to study their operation. The correct pacemaker operation was confirmed using a medical device - an implantable loop recorder. Sustainable operation of the pacemaker was achieved with the system closely mimicking human physiological conditions using a single biofuel cell. This first demonstration of the pacemaker activated by the physiologically produced electrical energy shows promise for future electronic implantable medical devices powered by electricity harvested from the human body.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据