4.6 Article

Anodized pore structural evolution of focused ion beam patterned Al: direct analysis of branched nanopores and nanosacks

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 26, 页码 10659-10665

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp50630d

关键词

-

资金

  1. WCU program by the KOSEF under the MEST [R31-2008-000-10071-0]
  2. Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center
  3. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]

向作者/读者索取更多资源

In this work we describe three different trends of pore growth for anodic aluminum oxide nanopores based on their dependence on prepatterned interpore distances. Nanopatterned hexagonal concave arrays were formed by focused ion beam (FIB) lithography on aluminum foil with interpore distances in the range of 100 to 240 nm and the Al foil was anodized under the standard conditions known to result in a 100 nm interpore distance. This method allowed a systematic investigation of pore formation under the non-equilibrium conditions created by the FIB prepatterning. The pore diameter and the pore growth direction, which are affected by the interpore distance, were measured by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis with ion milling. When the interpore distance increases from 100 to 140 nm, the pore diameter becomes larger and nanopores are slightly tilted but maintained the interpore distance and straightness. As the interpore distance increases from 150 to 180 nm, the pore diameter becomes smaller and each nanopore starts to split into two nanopores. At interpore distances of over 190 nm, prepatterned concaves are developed into round flask-shaped nanosacks instead of one-dimensional tubes, and then these are split into three more sub-nanopores. The fundamental characteristics of anodic aluminum oxidation are discussed in accordance with various prepatterned concaves in the nanopore growth processes, providing a rational theory for the design of various complex 3-D AAO structures that can be controlled by prepatterning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据