4.6 Article

Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 31, 页码 12982-12987

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp51987b

关键词

-

资金

  1. National Natural Science Foundation (NSFC) [21071137, U1232211]

向作者/读者索取更多资源

The performance of N-doped graphene on Li-ion battery has been investigated systematically by means of a density functional theory method. Pyridinic N doping, graphitic N atoms and 5-8-5 double vacancies have been selected as the functional defects to study their influence on Li storage compared to the pristine graphene. It has been confirmed that introducing pyridinic N atoms with p-type doping is a suitable method, especially for graphene doped with 4 pyridinic N atoms, whose structural distortion induced by Li intercalation is small and supplies strong force for Li adsorption. The diffusion barrier for this model is lower than for pristine graphene, both for the side and center diffusion routes, contributing to the high mobility. In addition, we point out that the strong catch force for Li will cause more Li to stay on the pyridinic N-doped graphene during the charge-discharge cycles, leading to a faster decrease of capacity compared to pristine graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据