4.6 Article

Gas-phase spectroscopy of protonated adenine, adenosine 5′-monophosphate and monohydrated ions

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 45, 页码 19748-19752

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp53742k

关键词

-

资金

  1. Lundbeckfonden

向作者/读者索取更多资源

Microsolvation of chromophore ions commonly has large effects on their electronic structure and as a result on their optical absorption spectra. Here spectroscopy of protonated adenine (AdeH(+)) and its complex with one water molecule isolated in vacuo was done using a home-built mass spectrometer in combination with a tuneable pulsed laser system. Experiments also included the protonated adenosine 5'-monophosphate nucleotide (AMPH(+)). In the case of bare AdeH+ ions, one-photon absorption leads to four dominant fragment ions corresponding to ammonium and ions formed after loss of either NH3, HCN, or NH2CN. The yields of these were measured as a function of the wavelength of the light from 210 nm to 300 nm, and they were combined to obtain the total photoinduced dissociation at each wavelength (i.e., action spectrum). A broad band between 230 nm and 290 nm and the tail of a band with maximum below 210 nm (high-energy band) are seen. In the case of AdeH(+)(H2O), the dominant dissociation channel after photoexcitation in the low-energy band was simply loss of H2O while photodissociation of protonated AMP revealed two dominant dissociation channels associated with the formation of either AdeH(+) or loss of H3PO4. The action spectra of AdeH+, AdeH(+)(H2O), and AMPH(+) are almost identical in the 230-290 nm region, and they resemble the absorption spectrum of protonated adenine in aqueous solution recorded at low pH. Hence from our work it is firmly established that the lowest-energy transitions are independent of the surroundings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据