4.6 Article

Nature of proton transport in a water-filled carbon nanotube and in liquid water

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 17, 页码 6344-6349

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp50218j

关键词

-

资金

  1. NSFC [11275008, 91021007, 10974238]
  2. European Research Council
  3. Royal Society through a Royal Society Wolfson Research Merit Award
  4. EPSRC [EP/F067496/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/F067496/1] Funding Source: researchfish

向作者/读者索取更多资源

Proton transport (PT) in bulk liquid water and within a thin water-filled carbon nanotube has been examined using ab initio path-integral molecular dynamics (PIMD). Barrierless proton transfer is observed in each case when quantum nuclear effects (QNEs) are accounted for. The key difference between the two systems is that in the nanotube facile PT is facilitated by a favorable pre-alignment of water molecules, whereas in bulk liquid water solvent reorganization is required prior to PT. Configurations where the quantum excess proton is delocalized over several adjacent water molecules along with continuous interconversion between different hydration states reveals that, as in liquid water, the hydrated proton under confinement is best described as a fluxional defect, rather than any individual idealized hydration state such as Zundel, Eigen, or the so-called linear H7O3+ complex along the water chain. These findings highlight the importance of QNEs in intermediate strength hydrogen bonds (HBs) and explain why H+ diffusion through nanochannels is impeded much less than other cations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据