4.6 Article

Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 18, 页码 6920-6928

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp50900a

关键词

-

资金

  1. National Natural Science Foundation of China [21175067, 21273117]
  2. Research Fund for the Doctoral Program of Higher Education of China [20103207110004]
  3. Natural Science Foundation of Jiangsu Province [BK2011779]
  4. Foundation of the Jiangsu Education Committee [09KJA150001, 10KJB150009]
  5. Foundation of Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology [HPK201102]
  6. Program for Outstanding Innovation Research Team of Universities in Jiangsu Province
  7. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

We report a density functional theory (DFT) study of microscopic detailed effects of the bonding configuration of nitrogen-doped graphene (N-graphene) within the carbon lattice (including pyridinic, pyrrolic, and graphitic N) on the reactivity and mechanistic processes of H2O2 reduction reaction. We simulated the adsorption process of H2O2, analyzed the mechanistic processes, and calculated the reversible potential of each reaction step of the H2O2 reduction reaction on N-graphene. The results indicate that the adsorption of H2O2 on the pristine and N-doped graphene surfaces occurs via physisorption without the formation of a chemical bond. When H+ is introduced into the system, a series of reactions can occur, including the breakage of the O-O bond, the formation of an O-C chemical bond between oxygen and graphene, and the creation of water molecules. The results also indicate a decrease in the energy of the system and a positive reversible potential for each reaction step. The calculations of the relative energy of each reaction step and the value of the onset potential for H2O2 reduction reaction suggest that the reactivity of pristine and N-doped graphene has the following order: pyridinic N-graphene > pyrrolic N-graphene > graphitic N-graphene > pristine graphene. We also proposed an explanation based on electrostatic potential calculations for this dependence of the reactivity order on the bond configuration of the doping in N-graphene. The results of this study should help in the atomic-scale understanding of the dependence of the reactivity of N-graphene on its microstructure, inspire the study of various types of heteroatom-doped graphenes to improve their catalytic efficiency, and provide a theoretical framework to analyze their reactivities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据