4.6 Article

Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 1, 页码 270-278

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp42027a

关键词

-

资金

  1. National Natural Science Foundation of China [10732100, 10972239, 11004255, 11072271]

向作者/读者索取更多资源

Pore formation of lipid bilayers under mechanical stress is critical to biological processes. A series of coarse grained molecular dynamics simulations of lipid bilayers with carbon nanoparticles different in size have been performed. Surface tension was applied to study the disruption of lipid bilayers by nanoparticles and the formation of pores inside the bilayers. The presence of small nanoparticles enhances the probability of water penetration thus decreasing the membrane rupture tension, while big nanoparticles have the opposite effect. Nanoparticle volume affects bilayer strength indirectly, and particle surface density can complicate the interaction. The structural, dynamic, elastic properties and lateral densities of lipid bilayers with nanoparticles under mechanical stress were analyzed. The results demonstrate the ability of nanoparticles to adjust the structural and dynamic properties of a lipid membrane, and to efficiently regulate the pore formation behavior and hydrophobicity of membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据