4.6 Article

Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 29, 页码 12253-12261

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp51925b

关键词

-

资金

  1. UK BBSRC
  2. EPSRC [EP/H024697/1]
  3. EU
  4. Leverhulme Trust
  5. Engineering and Physical Sciences Research Council [EP/H024697/1] Funding Source: researchfish
  6. EPSRC [EP/H024697/1] Funding Source: UKRI

向作者/读者索取更多资源

In higher plants, high light conditions trigger the activation of non-photochemical quenching (NPQ), a process of photoprotective light energy dissipation, via acidification of the chloroplast lumen. Spectral changes occurring in the neoxanthin domain of the major light harvesting antenna complex (LHCII) have previously provided indirect evidence of a protein conformational switch during NPQ. We report here of two recombinant LHCII complexes mutated at the level of lumenal loop with altered quenching capacity with respect to the control. Replacement of the acidic lumenal-facing residue aspartate 111 (D111) with neutral valine (V111) yielded a recombinant complex with increased quenching capacity under low pH, due to a shift of the pK by 1 pH unit. The increase in total quenching was consistent with 40% reduction in the relative chlorophyll fluorescence lifetime and was accompanied by a lower energy emitting state of the mutant, as demonstrated by 77 K fluorescence spectroscopy. On the other hand, replacement of acidic glutamate 94 (E94) with glycine (G94) resulted in reduction of the fluorescence quenching yield attained at low pH. These results show for the first time that a subtle change in the LHCII apoprotein structure at the level of the lumenal loop induced by single aminoacid mutagenesis can affect protein sensitivity to pH leading to the establishment of NPQ. This work opens a potential avenue for manipulation of light harvesting efficiency in the natural antenna pigment-protein complexes that can be used for the creation of hybrid light energy conversion systems in future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据