4.6 Article

Is there a motivation for a universal behaviour in molecular populations undergoing chemical reactions?

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 37, 页码 15595-15601

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp52272e

关键词

-

向作者/读者索取更多资源

Many chemical reactions demonstrate a very similar evolution of reagent concentrations in time, although their species are quite different. This can be linked with a universal stochastic behavior of reagents. In this paper we show what role in understanding chemical kinetics stochastic models play. To support this concept, we consider two interesting cases known in the literature as first-and second-order reactions. The former has a stretched exponential decay in time for its reagent concentration, and the latter evolves hyperbolically. We have established that the behavior can be explained by limit theorems of probability theory. The reaction evolution is directly connected with different behavior motivations in reagent populations. The reason for the universal kinetics is found in the indices of the corresponding probability distribution functions. They are macroscopic parameters measured in chemical experiments. Such an approach allows ones to discover what happens with molecular populations in microscopic dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据