4.6 Article

Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 24, 页码 9549-9561

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp51476e

关键词

-

资金

  1. National Science Foundation of China [21222604]
  2. Program for New Century Excellent Talents in University [NCET-10-0611]
  3. Specialized Research Fund for the Doctoral Program of Higher Education [20120032110024]
  4. Seed Foundation of Tianjin University [60303002]
  5. Scientific Research Foundation for the Returned Overseas Chinese Scholars (MoE)
  6. Program of Introducing Talents of Discipline to Universities [B06006]

向作者/读者索取更多资源

This paper describes an investigation into the general trend in electronic properties of anatase TiO2 photocatalysts co-doped with transition metals and nitrogen employing first-principles density functional theory. Fourteen different transition metals (M), including Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, and Cd, have been considered. The characteristic band structures of the co-doping systems involving the transition metal series are presented. Our results indicate that the absorption edges of TiO2 are shifted to the visible-light region upon introduction of dopants, due to the reduced conduction band minimum (CBM) and the formation of impurity energy levels (IELs) in the band gap. These IELs are primarily formed from (a) the anti-bonding orbitals of the M-O (M indicates the doped transition metal) bonds, (b) the unsaturated nonbonding d orbitals of the doped transition metal (mainly d(xy), d(yz), and d(xz)), and (c) the Ti-O bonding/Ti-N anti-bonding orbitals of the bond next to the doped transition metal. When the valence d electrons of the doped metal are between 3 and 7, all three types of IELs appear in the band gap of the (M, N) co-doped systems. For systems doped with a metal of more than 7 valence electrons, only types (a) and (c) of IELs as well as the unoccupied p(z) state of N are observed. Based on our analysis, we propose that the co-doping systems such as (V, N), (Cr, N), and (Mn, N), which have the IELs with a significant bandwidth, are of great potential as candidates for photovoltaic applications in the visible light range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据