4.6 Article

The investigation of the hydrogen bond saturation effect during the dipole-dipole induced azobenzene supramolecular self-assembly

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 47, 页码 20753-20763

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp52864b

关键词

-

资金

  1. National Science Foundation of China [21171034, 51003013, 51073031, 21271040, 21304017]
  2. innovation project of doctoral dissertation [BC2010-04]
  3. Fundamental Research Funds for the Central Universities
  4. Innovation Program of Shanghai Municipal Education Commission

向作者/读者索取更多资源

The substituent group and hydrogen bonds play important roles in supramolecular self-assembly. To exploit the influential mechanism of hydrogen bonds during the dipole-dipole induced supramolecular self-assembly, some rigid azobenzene molecules with different electronegativity and hydrogen bonding capabilities were identified and designed. Different regular-shaped architectures were constructed via a simple solution process under mild conditions. Both experimental results and density functional theory calculations show that weak pi-pi stacking interactions lead to thick and short nanocylinders, strong dipole-dipole interactions and dipole induced pi-pi stacking lead to long and thin nanorods, appropriate hydrogen bonds consolidate the dipole-dipole interactions and dipole induced pi-pi stacking, forming thin nanosheets, while excessive hydrogen bonds in azobenzene would ruin the regular-shaped structures, giving irregular and stochastic aggregates. Namely there exists a certain hydrogen bond saturation effect in generating azobenzene nanostructures driven by dipole-dipole interactions. The results indicate that the morphologies of organic materials with azobenzene structures can be effectively controlled through rational molecular design by way of introducing appropriate dipole and hydrogen bonds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据