4.6 Article

Theoretical characterizations of the mechanism for the dimerization of monosilicic acid in basic solution

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 36, 页码 15027-15032

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp52117f

关键词

-

资金

  1. National Science Foundation of China [21073135, 21073134, 21273166]
  2. National Basic Research Program of China [2009CB623200]

向作者/读者索取更多资源

The anionic mechanisms for the elementary dimerization reaction of monosilicic acid in basic aqueous solution have been characterized comprehensively using various ab initio methods. Many new insights into the silicate oligomerization reaction, which is fundamentally important in sol-gel chemistry, zeolite synthesis, and cement hydration, are presented in this work. Conformational dependence of the dimerization reaction is proposed in view of hundreds of conformations with various inter-and intramolecular hydrogen bonding patterns along the reaction routes. An alternative water cleavage route from the five-coordinated silicon intermediate is revealed. The detour involves a six-center cyclic transition state, which is more preferable energetically than the well-known four-center water removal step. By including explicit water molecules, the activation barrier of the four-center water cleavage path can be reduced considerably to be even lower than the first barrier of the Si-O bond formation. In contrast, the six-center detour is less affected by the additional water molecules due to the unfavorable geometric distortion. The new understanding of the dimerization mechanism could have considerable impact on the initial stages of silica nucleation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据