4.6 Article

Impact of short and long-range effects on the magnetic interactions in neutral organic radical-based materials

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 15, 期 18, 页码 6982-6989

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp44647f

关键词

-

资金

  1. Agence Nationale de la Recherche (ANR) [ANR-2010-BLAN-703]
  2. Laboratoire d'Excellence on Chemistry of Complex Systems (LabEx-CSC, Strasbourg)
  3. Spanish Ministry of Science and Innovation [CTQ2011-23140]
  4. ICREA Funding Source: Custom

向作者/读者索取更多资源

The mutual influence of electronic structure and environment of the constituent units of neutral organic radical-based materials (radical dimers) is analysed by means of wave function calculations (Difference Dedicated Configuration Interaction, DDCI). Focus is put on the magnetic property modulations of two classes of neutral organic materials by inspecting both short- and long-range effects. The exchange coupling constant J for the high-temperature phase of the 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) material is calculated to be J= -95 cm(-1) at the DDCI level. The environmental electronic polarization is taken into account self-consistently using the individual polarizabilities of the atoms in a finite block of the crystal lattice (Discrete Reaction Field, DRF) and accounts for less than 5% of the calculated J value in TTTA. Furthermore, taking advantage of the chemical flexibility of the verdazyl radical family, the contribution of strong electron-withdrawing groups is analysed by extracting the J, U, t and K parameters from pairs of substituted verdazyl-based radicals. Our ab initio calculations of verdazyl radical pairs suggest that the addition of NO2 groups cause (i) the variations of the ferromagnetic and antiferromagnetic contributions to cancel out, leaving an almost constant exchange coupling constant, ca. J approximate to 20 cm(-1), and that (ii) enhanced conduction properties can be anticipated. In contrast to inorganic analogues, one may conclude that the magnetic behaviour of neutral organic radical-based materials is mostly governed by the supramolecular arrangement, whereas environmental effects have a lesser impact.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据