4.6 Article

Complexation behavior of trivalent actinides and lanthanides with 1,10-phenanthroline-2,9-dicarboxylic acid based ligands: insight from density functional theory

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 14, 期 31, 页码 11060-11069

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp40083a

关键词

-

向作者/读者索取更多资源

We have investigated the complexation behavior of preorganized 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) based ligands with trivalent lanthanides and actinides using density functional theory with various GGA type exchange-correlation functionals and different basis sets. New ligands have been designed from PDA through functionalization with soft donor atoms such as sulfur, resulting in mono-thio-dicarboxylic acids (TCA/TCA1) and di-thio-dicarboxylic acid (THIO). It has been found that selectivity in terms of complexation energy of actinides over lanthanides is the maximum with TCA1 where the metal-ligand binding is through the O atoms. This unusual feature where a softer actinide metal ion is bonded strongly with hard donor oxygen atoms has been explained using the popular chemical concepts, viz., Pearson's Hard-Soft-Acid-Base (HSAB) principle and the frontier orbital theory of chemical reactivity as proposed by Fukui. Detailed analysis within the framework of the HSAB principle indicates that the presence of softer nitrogen atoms in the phenanthroline moiety (which also act as donors to the metal ion) has a profound influence in changing the soft nature of the actinide ion, which in turn binds with the hard oxygen atoms in a stronger way as compared to the valence isoelectronic lanthanide ion. Also, the trends in the variation of calculated values of the metal-ligand bond distances and the corresponding complex formation energies have been rationalized using the Fukui reactivity indices corresponding to the metal ions and the donor sites. All the calculations have also been done in the presence of solvent. The intra-ligand synergistic effect'' demonstrated here for PDA or TCA1 with soft and hard donor centers might be very important in designing new ligands for selective extraction of various metal ions in a competitive environment. However, for TCA and THIO ligands with only soft donor centers, intra-ligand synergism'' may not be very efficient although reports are available demonstrating soft-soft inter-ligand synergism. Nevertheless, in the case of TCA and THIO complexes, a shorter Am-S bond distance in conjunction with lower metal ion charge and a higher percentage of orbital interaction energy corroborate the presence of a higher degree of covalency in Am-S bonds, which in turn may be responsible for selectivity towards Am3+.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据