4.6 Article

Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 14, 期 25, 页码 9167-9175

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp41318c

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [20903022, 20903023, 21173045]
  2. Award Program for Minjiang Scholar Professorship, Program for Changjiang Scholars and Innovative Research Team in Universities [PCSIRT0818]
  3. Program for Returned HighLevel Overseas Chinese Scholars of Fujian Province
  4. Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO2 nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO2. The GR-TiO2 nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO2 upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO2 toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据