4.6 Article

Band engineered ternary solid solution CdSxSe1-x-sensitized mesoscopic TiO2 solar cells

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 14, 期 19, 页码 7154-7161

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp40277g

关键词

-

资金

  1. URC [R-284-000-075-112]
  2. NRF CRP [R-284-000-079-592]

向作者/读者索取更多资源

The optical band gap of the light absorber and the alignment of its bands with the underlying wide band gap metal oxide are critical for efficient light harvesting and charge separation in semiconductor-sensitized solar cells (SSCs). In practice, these two requirements are however not always fulfilled concomitantly in SSCs. Favourable band alignment in CdSe-sensitized TiO2 requires utilization of quantum sized CdSe, which causes great losses in the harvesting of long wavelength photons due to quantum confinement effects. In the present study, ternary cadmium sulfoselenide (CdSxSe1-x), which has a tunable band gap between those of CdSe and CdS without reducing the dimension, was proposed as a sensitizer for TiO2. CdSxSe1-x was successfully synthesized by alternately depositing CdS and CdSe layers under ambient conditions. SSCs utilizing CdSxSe1-x-sensitized TiO2 yielded a power conversion efficiency of 4.05% under simulated AM1.5 100 mW cm(-2) illumination, rivalling the well-studied cascaded CdS/CdSe electrodes when an aqueous polysulfide solution was used as the electrolyte and Cu2S as the counter electrode. The findings of the present study provide an alternative and viable approach for optimizing the energetics of semiconductor sensitizers for efficient charge separation, while also maintaining good light harvesting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据