4.6 Article

Turn-directed folding dynamics of β-hairpin-forming de novo decapeptide Chignolin

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 14, 期 36, 页码 12442-12450

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp40285h

关键词

-

资金

  1. National University of Singapore [R279-000-214-133, R279-000-214-731]
  2. Singapore-MIT Alliance

向作者/读者索取更多资源

Realistic mechanistic pictures of beta-hairpin formation, offering valuable insights into some of the key early events in protein folding, are accessible through short designed polypeptides as they allow atomic-level scrutiny through simulations. Here, we present a detailed picture of the dynamics and mechanism of beta-hairpin formation of Chignolin, a de novo decapeptide, using extensive, unbiased molecular dynamics simulations. The results provide clear evidence for turn-directed broken-zipper folding and reveal details of turn nucleation and cooperative progression of turn growth, hydrogen-bond formations, and eventual packing of the hydrophobic core. Further, we show that, rather than driving folding through hydrophobic collapse, cross-strand side-chain packing could in fact be rate-limiting as packing frustrations can delay formation of the native hydrophobic core prior to or during folding and even cause relatively long-living misfolded or partially folded states that may nucleate aggregative events in more complex situations. The results support the increasing evidence for turn-centric folding mechanisms for beta-hairpin formation suggested recently for GB1 and Peptide 1 based on experiments and simulations but also point to the need for similar examinations of polypeptides with larger numbers of cross-strand hydrophobic residues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据