4.6 Article

Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 14, 期 10, 页码 3634-3639

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp24062a

关键词

-

资金

  1. Australian Research Council (ARC) [DP1094261]

向作者/读者索取更多资源

A composite cathode material for lithium ion battery applications, Mo-doped LiFePO4/C, is obtained through a facile and fast microwave-assisted synthesis method. Rietveld analysis of LiFePO4-based structural models using synchrotron X-ray diffraction data shows that Mo-ions substitute onto the Fe sites and displace Fe-ions to the Li sites. Supervalent Mo6+ doping can act to introduce Li ion vacancies due to the charge compensation effect and therefore facilitate lithium ion diffusion during charging/discharging. Transmission electron microscope images demonstrate that the pure and doped LiFePO4 nanoparticles were uniformly covered by an approximately 5 nm thin layer of graphitic carbon. Amorphous carbon on the graphitic carbon-coated pure and doped LiFePO4 particles forms a three-dimensional (3D) conductive carbon network, effectively improving the conductivity of these materials. The combined effects of Mo-doping and the 3D carbon network dramatically enhance the electrochemical performance of these LiFePO4 cathodes. In particular, Mo-doped LiFePO4/C delivers a reversible capacity of 162 mA h g(-1) at a current of 0.5 C and shows enhanced capacity retention compared to that of undoped LiFePO4/C. Moreover, the electrode exhibits excellent rate capability, with an associated high discharge capacity and good electrochemical reversibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据