4.6 Article

Kinetics of α hydrogen abstractions from thiols, sulfides and thiocarbonyl compounds

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 14, 期 37, 页码 12773-12793

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp41114h

关键词

-

资金

  1. Fund for Scientific Research Flanders (FWO)
  2. Long Term Structural Methusalem Funding by the Flemish Government
  3. Stevin Supercomputer Infrastructure at Ghent University
  4. Ghent University
  5. Hercules Foundation
  6. Flemish Government - Department EWI

向作者/读者索取更多资源

Hydrogen abstraction reactions involving organosulfur compounds play an important role in many industrial, biological and atmospheric processes. Despite their chemical relevance, little is known about their kinetics. In this work a group additivity model is developed that allows predicting the Arrhenius parameters for abstraction reactions of alpha hydrogen atoms from thiols, alkyl sulfides, alkyl disulfides and thiocarbonyl compounds by carbon-centered radicals at temperatures ranging from 300 to 1500 K. Rate coefficients for 102 hydrogen abstractions were obtained using conventional transition state theory within the high-pressure limit. Electronic barriers were calculated using the CBS-QB3 method and the rate coefficients were corrected for tunneling and hindered rotation about the transitional bond. Group additivity values for 46 groups are determined. To account for resonance and hyperconjugative stabilization in the transition state, 8 resonance corrections were fitted to a set of 32 reactions. The developed group additivity scheme was validated using a test set containing an additional 30 reactions. The group additivity scheme succeeds in reproducing the rate coefficients on average within a factor of 2.4 at 300 K and 1.4 at 1000 K. Mean absolute deviations of the Arrhenius parameters amount to, respectively, 2.5 kJ mol(-1) for E-a and 0.13 for log A, both at 300 and 1000 K. This work hence illustrates that the recently developed group additivity methods for Arrhenius parameters extrapolate successfully to hetero-element containing compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据