4.6 Article

The ground-state potential energy function of a beryllium dimer determined using the single-reference coupled-cluster approach

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 45, 页码 20311-20317

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp22417d

关键词

-

向作者/读者索取更多资源

The accurate ground-state potential energy function of the beryllium dimer, Be(2), has been determined from large-scale ab initio calculations using the single-reference coupled-cluster approach in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. Results obtained with the conventional and explicitly-correlated coupled-cluster methods were compared. The scalar relativistic and adiabatic (the diagonal correction) effects were also discussed. The vibration-rotation energy levels of Be(2) were predicted and found to be as accurate as those determined from the empirical potential energy function [J. M. Merritt et al., Science, 2009, 324, 1548]. The potential energy function of Be(2) was determined in this study to have a minimum at 2.444 angstrom and the well depth of 935 cm(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据