4.6 Article

Gelatin renaturation and the interfacial role of fillers in bionanocomposites

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 11, 页码 4901-4910

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp00882f

关键词

-

资金

  1. CICYT [MAT2009-09960]
  2. Spanish Ministerio de Ciencia e Innovacion

向作者/读者索取更多资源

This work describes a systematic study of gelatin-sepiolite structural bionanocomposites to show how the renaturation level of the biopolymer is highly dependent on the type of mineral particle used. The aim of the work is to prove that chemical interactions between both components (hydrogen and covalent bonding) determine the organization level of the biopolymer which in turn results in drastic differences in the elastic properties of the prepared bionanocomposites. To assess this, several systematic modifications were introduced into the silicate structure and surface, generating four derivatives. Two derivatives prepared by thermal treatments, monohydrated sepiolite and protoenstatite, and two chemically modified sepiolites, amino and epoxy terminated, were prepared and used as the inorganic (or hybrid) phase in the bionanocomposites. The thermal and chemical modifications performed on the sepiolite surface induced a dramatic decrease in the renaturation level as determined by DSC and FTIR techniques. On the other hand, untreated sepiolite induced a higher renaturation level in the polypeptide, probably due to the alignment of the collagen-like triple helix along sepiolite external surface channels. The measured mechanical properties of the studied compositions confirm that the renaturation level of gelatin is a key factor in understanding the elastic properties of bionanocomposites. These results suggest that mineral particles introduced in the polypeptide matrix provide an effective control over the matrix crystallinity giving rise to tunable mechanical properties of the final bionanocomposite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据