4.6 Article

An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 15, 页码 6849-6857

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp02846k

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [1191-Ionic]
  2. Fonds derChemischen Industrie
  3. Australian Research Council [DP0986194]

向作者/读者索取更多资源

The structure and dynamics of the interfacial layers between the extremely pure air-and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate and Au(111) has been investigated using in situ scanning tunneling microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy measurements. The in situ scanning tunnelling microscopy measurements reveal that the Au(111) surface undergoes a reconstruction, and at -1.2 V versus Pt quasi-reference the famous (22 x root 3) herringbone superstructure is probed. Atomic force microscopy measurements show that multiple ion pair layers are present at the ionic liquid/Au interface which are dependent on the electrode potential. Upon applying cathodic electrode potentials, stronger ionic liquid near surface structure is detected: both the number of near surface layers and the force required to rupture these layers increases. The electrochemical impedance spectroscopy results reveal that three distinct processes take place at the interface. The fastest process is capacitive in its low-frequency limit and is identified with electrochemical double layer formation. The differential electrochemical double layer capacitance exhibits a local maximum at -0.2 V versus Pt quasi-reference, which is most likely caused by changes in the orientation of cations in the innermost layer. In the potential range between -0.84 V and -1.04 V, a second capacitive process is observed which is slower than electrochemical double layer formation. This process seems to be related to the herringbone reconstruction. In the frequency range below 1 Hz, the onset of an ultraslow faradaic process is found. This process becomes faster when the electrode potential is shifted to more negative potentials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据