4.6 Article

Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 21, 页码 10249-10257

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp20076c

关键词

-

资金

  1. Ministry of Education, Singapore [T208A1216]
  2. Curtin University

向作者/读者索取更多资源

A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia (3) over bard mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes for fuel cells. Meso-silica is functionalized by 80wt% HPW using a vacuum impregnation method. The HPW-functionalized meso-silica (HPW-meso-silica) nanocomposites are characterized by transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), N(2) adsorption/desorption isotherms, thermogravimetric analysis (TGA), water uptake and four-probe conductivity. The results show that the mesoporous structure of silica hosts can be altered by the hydrothermal temperature. Conductivity measurements indicate that meso-silica host with pore diameter of 5.0 nm has the highest proton conductivity of 0.11 S cm(-1) at 80 degrees C and 100% relative humidity (RH) with an activation energy of similar to 14 kJ mol(-1) and better stability as compared to that with large mesopores. The proton conductivity and performance of HPW-meso-silica nanocomposites also increase with the RH, but it is far less sensitive to RH changes as compared to conventional perfluorosulfonic acid (PFSA) polymers such as Nafion. The maximum power density of the cell with HPW-meso-silcia nanocomposite membranes is 221 mW cm(-2) at 80 degrees C and 100% RH and decreases to 171 mW cm(-2) when RH is reduced to 20%, a 20% decrease in power output. In the case of a cell with Nafion 115 membranes, the decrease in power density is 95% under identical test conditions. The results demonstrate that the HPW-meso-silica nanocomposite has an exceptionally high water retention capability and is a promising proton exchange membrane material for fuel cells operating at reduced humidity and elevated temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据