4.6 Article

Low temperature kinetics, crossed beam dynamics and theoretical studies of the reaction S(D-1) + CH4 and low temperature kinetics of S(D-1) + C2H2

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 18, 页码 8485-8501

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp02813d

关键词

-

资金

  1. Italian MIUR (Ministero Istruzione Universita Ricerca) [2007H9S8SW_004, 2007WLBXX9_004]
  2. French Agence Nationale de Recherche
  3. CRNS
  4. European Union
  5. FSE (Fondo Sociale Europeo)-Regione Umbria-Ministero del Lavoro e delle Politiche Sociali
  6. COST Action [CM0901]
  7. [MCRTN-CT-2004-512302]

向作者/读者索取更多资源

The reaction between sulfur atoms in the first electronically excited state, S(D-1), and methane (CH4), has been investigated in a complementary fashion in (a) crossed-beam dynamics experiments with mass spectrometric detection and time-of-flight (TOF) analysis at two collision energies (30.4 and 33.6 kJ mol(-1)), (b) low temperature kinetics experiments ranging from 298 K down to 23 K, and (c) electronic structure calculations of stationary points and product energetics on the CH4S singlet potential energy surface. The rate coefficients for total loss of S(D-1) are found to be very large (ca. 2 x 10(-10) cm(3) molec(-1) s(-1)) down to very low temperatures indicating that the overall reaction is barrier-less. Similar measurements are also performed for S(D-1) + C2H2, and also for this system the rate coefficients are found to be very large (ca. 3 x 10(-10) cm(3) molec(-1) s(-1)) down to very low temperatures. From laboratory angular and TOF distributions at different product masses for the reaction S(D-1) + CH4, it is found that the only open reaction channel at the investigated collision energies is that leading to SH + CH3. The product angular, T(theta), and translational energy, P(E'(T)), distributions in the center-of-mass frame are derived. The reaction dynamics are discussed in terms of two different micromechanisms: a dominant long-lived complex mechanism at small and intermediate impact parameters with a strongly polarized T(theta), and a direct pickup-type (stripping) mechanism occurring at large impact parameters with a strongly forward peaked T(theta). Interpretation of the experimental results on the S(D-1) + CH4 reaction kinetics and dynamics is assisted by high-level theoretical calculations on the CH4S singlet potential energy surface. The dynamics of the SH vertical bar CH3 forming channel are compared with those of the corresponding channel (leading to OH + CH3) in the related O(D-1) + CH4 reaction, previously investigated in crossed-beams in other laboratories at comparable collision energies. The possible astrophysical relevance of S(D-1) reactions with hydrocarbons, especially in the chemistry of cometary comae, is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据