4.6 Article

Electrokinetic particle translocation through a nanopore

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 9, 页码 4060-4071

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp02267e

关键词

-

资金

  1. Ministry of Education, Science and Technology of Korea [R32-2008-000-20082-0]

向作者/读者索取更多资源

Nanoparticle electrophoretic translocation through a single nanopore induces a detectable change in the ionic current, which enables the nanopore-based sensing for various bio-analytical applications. In this study, a transient continuum-based model is developed for the first time to investigate the electrokinetic particle translocation through a nanopore by solving the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential and the Navier-Stokes equations for the flow field using an arbitrary Lagrangian-Eulerian (ALE) method. When the applied electric field is relatively low, a current blockade is expected. In addition, the particle could be trapped at the entrance of the nanopore when the electrical double layer (EDL) adjacent to the charged particle is relatively thick. When the electric field imposed is relatively high, the particle can always pass through the nanopore by electrophoresis. However, a current enhancement is predicted if the EDL of the particle is relatively thick. The obtained numerical results qualitatively agree with the existing experimental results. It is also found that the initial orientation of the particle could significantly affect the particle translocation and the ionic current through a nanopore. Furthermore, a relatively high electric field tends to align the particle with its longest axis parallel to the local electric field. However, the particle's initial lateral offset from the centerline of the nanopore acts as a minor effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据