4.6 Article

H-2 NMR calculations on polynuclear transition metal complexes: on the influence of local symmetry and other factors

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 45, 页码 20199-20207

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp22081k

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [BU 911/12-1, BU 911/12-2]

向作者/读者索取更多资源

It is now well-known that H-2 solid-state NMR techniques can bring a better understanding of the interaction of deuterium with metal atoms in organometallic mononuclear complexes, clusters or nanoparticles. In that context, we have recently obtained experimental quadrupolar coupling constants and asymmetry parameters characteristic of deuterium atoms involved in various bonding situations in ruthenium clusters, namely D4Ru4(CO)(12), D2Ru6(CO)(18) and other related compounds [Gutmann et al., J. Am. Chem. Soc., 2010, 132, 11759], which are model compounds for edge-bridging (mu-H) and face-capping (mu(3)-H) coordination types on ruthenium surfaces. The present work is in line with density functional theory (DFT) calculations of the electric field gradient (EFG) tensors in deuterated organometallic ruthenium complexes. The comparison of quadrupolar coupling constants shows an excellent agreement between calculated and observed values. This confirms that DFT is a method of choice for the analysis of deuterium NMR spectra. Such calculations are achieved on a large number of ruthenium clusters in order to obtain quadrupolar coupling constants characteristic of a given coordination type: terminal-D, eta(2)-D-2, mu-D, mu(3)-D as well as mu(4)-D and mu(6)-D (i.e. interstitial deuterides). Given the dependence of such NMR parameters mainly on local symmetry, these results are expected to remain valid for large assemblies of ruthenium atoms, such as organometallic ruthenium nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据