4.6 Article

Relating the current science of ion-defect behavior in ice to a plausible mechanism for directional charge transfer during ice particle collisions

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 13, 期 44, 页码 19707-19713

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp21593k

关键词

-

资金

  1. US National Science Foundation [CHE 0 809 480]
  2. Direct For Mathematical & Physical Scien [0809480] Funding Source: National Science Foundation

向作者/读者索取更多资源

A melding of modern experimental results descriptive of fundamental ion defect properties of ice is presented as a logical basis of a mechanism for the preferential transfer of positive charge from large to small colliding ice particles. The result may relate to the electrification of storm clouds. It is broadly agreed that such localized charge transfer during collision of small upwardly mobile ice particles with falling ice granules (i.e., graupel/hail) can lead to macroscopic charge separation capable of initiating lightning strikes during the expansion stage of a storm cell. Though the larger particles are thought to become negatively charged during the collisions neither a generally favored charge-exchange agent nor a preferred mechanism for the directional particle-to-particle charge transfer exists. Nevertheless, should ionic point defects of ice play a key role, the fundamental properties of ice defects considered here must apply. They include: (1) above 140 K protons move readily within and on the surface of ice while hydroxide ions are orders-ofmagnitude less mobile, (2) whether generated by dissociation of HC1 buried in ice, during neat ice particle growth, or at platinum-ice interfaces, interior protons move to and apparently collect at the ice-vacuum interface, and (3) proton activity and populations are orders-of-magnitude greater at the surface of ice films and free-standing ice particles than in the interior. From these fundamentals an untested argument is developed that within an ensemble of free floating ice particles the proton density at the surface is greater for larger particles. This implies a plausible proton-based mechanism that is consistent with current concepts of ice particle charging through collisions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据