4.6 Article

Control over the permeation of silica nanoshells by surface-protected etching with water

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 12, 期 38, 页码 11836-11842

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp00031k

关键词

-

资金

  1. Basic Energy Sciences-U.S. Department of Energy
  2. SISGR-Catalysis for Energy [DE-SC0002247]
  3. National Science Foundation [DMR-0956081]
  4. National Natural Science Foundation of China [20901081]
  5. Chinese Academy of Sciences

向作者/读者索取更多资源

We demonstrate a water-based etching strategy for converting solid silica shells into porous ones with controllable permeability. It overcomes the challenges of the alkaline-based surface-protected etching process that we previously developed for the production of porous and hollow silica nanostructures. Mild etching around the boiling point of water partially breaks the imperfectly condensed silica network and forms soluble monosilicic acid, eventually producing mesoscale pores in the silica structures. With the surface protection from poly(vinyl pyrrolidone) (PVP), it is possible to maintain the overall shape of the silica structures while at the same time to create porosity inside. By using bulky PVP molecules which only protect the near-surface region, we are able to completely remove the interior silica and produce hollow particles. Because the etching is mild and controllable, this process is particularly useful for treating small silica particles or core-shell particles with very thin silica shells for which the alkaline-based etching method has been difficult to control. We demonstrated the precise control of the permeation of the chemical species through the porous silica shells by using a model reaction which involves the etching of Ag encapsulated inside Ag@SiO(2) by a halocarbon. It is expected that the water-based surface-protected etching method can be conveniently extended to the production of various porous silica shells containing functional materials whose diffusion to outside and/or reaction with outside species can be easily controlled.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据