4.6 Article

Modulation of iridium(III) phosphorescence via photochromic ligands: a density functional theory study

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 12, 期 41, 页码 13730-13736

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp00564a

关键词

-

资金

  1. National Basic Research 973 Program [2006CB806200]
  2. NSFC/China
  3. Scientific Committee of Shanghai

向作者/读者索取更多资源

The photochromic iridium(III) complex (Py-BTE)(2)Ir(acac) synthesized by Tan et al. [W. Tan et al., Org. Lett. 2009, 11, 161-164] has shown distinct photo-reactivity and photo-controllable phosphorescence. We here present a density functional theory study on the (Py-BTE)(2)Ir(acac) complex to explore the mechanism at the molecular level and to help further design of photochromic iridium(III) complexes with the desirable properties. The hybrid functional PBE0, with 25% Hartree-Fock exchange, is found to give an optimal structure compared with X-ray crystallographic data. The absorption bands are well reproduced by using time-dependent density functional theory calculations, lending the possibility to assign the metal-to-ligand and intra-ligand charge transfer transitions. The radiative and nonradiative deactivation rate constants, k(r) and k(nr), are rationalized for both the open-ring and closed-ring forms of the complex. The very large k(nr) and small k(r) make the closed-ring form of the complex non-emissive. The triplet reactivity of the Py-BTE ligand is also studied by performing density functional theory calculations on the potential energy surfaces of the ground state and the lowest triplet state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据