4.6 Article

Hydration of nucleic acid bases: a Car-Parrinello molecular dynamics approach

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 12, 期 14, 页码 3363-3375

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b923930h

关键词

-

资金

  1. NSF Nanotoxicity CREST Center [HRD-0833178]

向作者/读者索取更多资源

Comprehensive study on interactions between nucleic acid bases (NABs) and bulk water environment has been performed with use of Car-Parrinello molecular dynamics. Detailed analysis of average number, lifetimes and mobility of water molecules, orientation and 3D organization of hydrogen bond network in the first hydration shell of adenine, guanine, cytosine and thymine has been carried out. Effect of hydration by bulk water environment has been compared with the data from polyhydrated complexes of NABs. During bulk water hydration the presence of mixed Hw center dot center dot center dot N/Hw center dot center dot center dot pi type of bonding is detected for imino nitrogen atoms. The formation of three hydrogen bonds to carbonyl groups reflects the significance of polarizing effects of aqueous environments. Hydration of hydrophobic sites revealed the presence of extremely weak bonding. Hydration of C6-H6 site of thymine is standing significantly apart from the hydration of other hydrophobic sites. An average coordination numbers of adenine, guanine, cytosine and thymine in bulk water environment are 6.87, 8.52, 6.12 and 6.42 water molecules, correspondingly. The lifetime of water molecules in the first hydration shell varies from 1 to 3 ps. Some differences in hydration studied by CPMD (bulk water) and quantum chemical (less than 20 water molecules) methods indicate a significant effect of the second hydration shell on structure and properties of the first hydration shell for the considered compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据