4.6 Article

Molecular organization in self-assembled binary porphyrin nanotubes revealed by resonance Raman spectroscopy

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 12, 期 16, 页码 4072-4077

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b926068d

关键词

-

资金

  1. United States Department of Energy [DEAC04-94AL85000]
  2. Laboratory Directed Research and Development program at Sandia National Laboratories
  3. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. FLAD (Luso-American Foundation, Portugal)

向作者/读者索取更多资源

Porphyrin nanotubes were formed by the ionic self-assembly of tetrakis(4-sulfonatophenyl) porphyrin diacid (H(4)TPPS(4)(2-)) and Sn(IV) tetra(4-pyridyl) porphyrin (Sn(OH )(X)TPyP(4+/5+) [X = OH(-) or H(2)O]) at pH 2.0. As reported previously, the tubes are hollow as revealed by transmission electron microscopy, approximately 60 nm in diameter, and can be up to several micrometres long. The absorption spectrum of the porphyrin nanotubes presents monomer-like Soret bands, as well as two additional red-shifted bands characteristic of porphyrin J-aggregates (offset face-to-face stacks). To elucidate the origin of the J-aggregate bands and the internal interactions of the porphyrins, the resonance Raman spectra have been obtained for the porphyrin nanotubes with excitations near resonance with the Soret J-aggregate band and the monomer-like bands. The resonance Raman data reveal that the Sn porphyrins are not electronically coupled to the J-aggregates within the tubes, which are formed exclusively by H(4)TPPS(4)(2-). This suggests that the internal structure of the nanotubes has H(4)TPPS(4)(2-) in aggregates that are similar to the widely studied H(4)TPPS(4)(2-) self-aggregates and that are segregated from the Sn porphyrins. Possible internal structures of the nanotubes and mechanisms for their formation are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据