4.6 Article

Non covalent interactions in RNA and DNA base pairs: a quantum-mechanical study of the coupling between solvent and electronic density

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 11, 期 48, 页码 11617-11623

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b915898g

关键词

-

向作者/读者索取更多资源

It is well-known that a solvent can modify the relative importance of the different constituents (electrostatic and dispersion) of non-covalent interactions, but much less is known about how these solvent-induced modifications specifically couple with the polarization of the electronic density and electronic correlation. Here we present a quantum mechanical analysis of the effects of the solvent on the non covalent interactions (both stacking and hydrogen bonding) in base pairs using a hierarchy of combinations between a MP2 correlated description for the base pairs and the polarizable continuum model (PCM) for the solvent. A comparison of the results obtained in these different combinations of increasing accuracy allows us to better analyze the important role played by the coupling between correlated electronic densities and solvent polarization in determining the relative importance of stacking and hydrogen bonding effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据