4.6 Article

Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 11, 期 15, 页码 2767-2778

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b820052a

关键词

-

资金

  1. Cornell University
  2. American Chemical Society Petroleum Research Foundation [47918-G5]
  3. National Science Foundation

向作者/读者索取更多资源

Nanoparticles can catalyze many important chemical transformations in organic synthesis, pollutant removal, and energy production. Characterizing their catalytic properties is essential for understanding the fundamental principles governing their activities, but is challenging in ensemble measurements due to their intrinsic heterogeneity from their structural dispersions, heterogenous surface sites, and surface restructuring dynamics. To remove ensemble averaging, we recently developed a single-particle approach to study the redox catalysis of individual Au-nanoparticles in solution. By detecting the fluorescence of the catalytic product at the single molecule level, we followed the catalytic turnovers of single Au-nanoparticles in real time at single-turnover resolution. Here we extend our single-nanoparticle studies to examine in detail the activity and heterogeneity of 6 nm spherical Au-nanoparticles. By analyzing the statistical properties of single-particle reaction waiting times across a range of substrate concentrations, we directly determine the distributions of kinetic parameters of individual Au-nanoparticles, including the rate constants and the equilibrium constants of substrate adsorption, and quantify their heterogeneity. Large activity heterogeneity is observed among the Au-nanoparticles in both the catalytic conversion reaction and the product dissociation reaction, which are typically hidden in ensemble-averaged measurements. Analyzing the temporal fluctuation of catalytic activity of individual Au-nanoparticles further reveals that these nanoparticles have two types of surface sites with different catalytic properties one type-a with lower activity but higher substrate binding affinity, and the other type-b with higher activity but lower substrate binding affinity. Each Au-nanoparticle exhibits type-a behavior at low substrate concentrations and switches to type-b behavior at a higher substrate concentration, and the switching concentration varies largely from one nanoparticle to another. The heterogeneous and dynamic behavior of Au-nanoparticle catalysts highlight the intrieate interplay between catalysis, structural dispersion, variable surface sites, and surface restructuring dynamics in nanocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据