4.6 Article

Electronic structure models of oxygen adsorption at the solvated, electrified Pt(111) interface

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 11, 期 43, 页码 10108-10117

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b909233a

关键词

-

资金

  1. National Science Foundation [CBET-0730502]
  2. National Science Council, Taiwan [NSC-095-SAF-I-564-022-TMS]

向作者/读者索取更多资源

The adsorption of molecular oxygen is the first step in the oxygen reduction reaction. Influences of interfacial water structure and electrode potential on oxygen adsorption to the Pt(111) surface were evaluated using density functional theory. Two approaches were used to model the electrification of the interface, an applied homogeneous electric field and the double-reference method of Filhol, Taylor, and Neurock. The free energy change for molecular oxygen replacement of water at the surface shows qualitatively different trends between the two models. The inclusion of solvation effects and direct control of the electrode potential offered by the double-reference method lead to the conclusion that O-2 replacement of water is favorable at all potentials studied, and O-2 binding becomes more favorable with increasing potential. This trend is contrary to that observed using an external electric field model to represent the electrochemical double layer, and arises due to the compounded effect of potential on water-surface, oxygen-surface, and water-molecular oxygen interactions. These results indicate that oxygen replacement of adsorbed water does not limit the overall oxygen reduction reaction rate at a proton-exchange membrane fuel cell cathode. The impacts of aspects of model construction ( number of water layers, water density) and variation of electrode potential on the O-2-Pt(111) interaction are described.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据